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The rotational partition function for linear molecules
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An important function in the statistical treatment of a gas of linear molecules is

S(α) =

∞∑
J=0

(2J + 1) e−αJ(J+1).

This sum is convenient to use mainly when α is large and alternate expressions, generally
asymptotic expansions, are often used when α is small. In this paper, the sum is evaluated
to yield a single expression that is valid for large and small values of α. The expression is
composed of three terms, each of which involves the theta functions of Jacobi. One term
is in the form of an integral, but is small relative to the other two and easily evaluated by
numerical means. The expression is readily differentiated and can be used for the general
evaluation of the rotational partition function for gases of linear molecules at all temperatures.

1. Introduction

The function defined by

S(α) =
∞∑
J=0

(2J + 1) e−αJ(J+1) (1)

is important in the statistical treatment of a gas of linear molecules. It is used to
describe the contributions to the thermodynamic functions from the rotational mo-
tion of the individual molecules. The argument of this function represents the ratio
α = Θr/T , Θr being a rotational temperature characteristic of the molecule and T
being the temperature of the gas. The function S(α) constitutes the complete rota-
tional contribution to the molecular partition function under the assumptions that the
gas be ideal, that the rotation be described in terms of a rigid rotator uncoupled to
any vibrational motions, that the molecules be nonsymmetric, and that they be in a
1Σ electronic state. Although these assumptions are rather numerous and sometimes
severe, the function S(α) still plays an important role when they are relaxed. It can
be viewed as a zeroth order contribution to which corrections are applied. The deriv-
atives of S(α) also play a role when the rigid rotator approximation is relaxed and
coupling between the rotational and vibrational motions is introduced. The general
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statistical treatment of a gas of linear molecules involves the function S(α) and its
derivatives.

From a purely computational viewpoint, S(α) and its derivatives can be calculated
directly from equation (1). All the terms are positive, so that numerical errors due to
cancellation of terms do not occur. Further, since α is always positive, the terms of the
sum eventually become small enough to neglect. However, as α gets smaller, which
corresponds to increasing the temperature of the gas, the number of terms needed to
maintain a certain accuracy increases without bound. At some point, the evaluation of
the sum becomes inconvenient.

At the other extreme, the Euler–MacLaurin sum formula [10] can be applied to
obtain an asymptotic expansion for S(α) about α = 0 (i.e., T = ∞). In addition to
the direct application of the expansion formula [3], certain rearrangements have been
proposed [7,8] which allow greater accuracy for moderate values of α. Since all such
expansions are asymptotic, though, they necessarily diverge if either too many terms
are included in the sum or the value of α gets too large.

The general procedure for evaluating S(α) is normally a combination of the two
extremes. If α is smaller than some cutoff value (say, less than 0.7), one of the
asymptotic expressions is used. If α is larger than the cutoff, the sum of equation (1)
is used directly. Although such a procedure should be reliable for computational
purposes, it is desirable to have a single expression that is convenient for all values of
α. Such an expression is derived in this paper.

Because the sum in equation (1) is so similar to those that define the theta
functions of Jacobi [10], it is natural to suggest that S(α) be expressed in terms of
them [5,7]. Although it has generally been concluded that this cannot be done, the
expression derived here is in terms of the theta functions.

The expression derived in this paper consists of three terms. Two terms, expressed
in terms of well-known functions, contain the major contributions to the function, their
sum yielding S(α) exactly in both the α → 0 and α → ∞ limits. The remainder is
in the form of an integral. It never exceeds 0.175 and is generally less than this. The
remainder has not been evaluated in closed form (except as an infinite sum, which is
not generally useful), but it can be evaluated numerically to high accuracy with minor
effort.

The rest of this paper is organized as follows. Section 2 presents the derivation
of the expression for S(α). Section 3 discusses its properties and suggests some means
for its evaluation. Section 4 presents the analogous expressions for the derivatives of
S(α). Section 5 presents some conclusions.

2. Derivation of the expression

The form of the sum in equation (1) suggests that S(α) should be related to the
first derivative of one of the theta functions. The closely related exchange rotational
partition function [4], which differs from S(α) only by the additional factor of (−)J

in the summand, can be expressed in just such a way. Attempts to find a direct
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relationship have not been successful, but the above reasoning suggests a slightly
different approach. A new function can be defined that is similar to the theta functions
but whose derivative is related to S(α). This function is found to obey a diffusion-
type differential equation, the solution of which can be used to derive a closed-form
expression for S(α).

Define the function

F (q, a) =
∞∑
n=0

q(n+a)2
. (2)

The sum on the right hand side converges for all q such that |q| < 1 and for all
complex a. The function F (q, a) can be shown to be an entire function in a and, in
general, a multiple-valued function in q with a branch point at q = 0. Introducing this
function, equation (1) can be reexpressed as

S(α) = −eα/4

α

∂

∂a
F (e−α, a) |a=1/2 . (3)

The theta functions can all be expressed in terms of F (q, a). Specifically,1

ϑ4(z, q) = −1 + e(2z+π)2/4 ln2 q

{
F

(
q,

i(2z + π)
2 ln q

)
+ F

(
q,− i(2z + π)

2 ln q

)}
. (4)

The other three theta functions can be constructed directly from this one [10]. Inversion
of this equation to give an expression for F (q, a) in terms of the theta functions is not
possible. All the theta functions contain a sum of the form (F (q, a) + F (q,−a)), so
that, for arbitrary values of a, it is impossible to extract F (q, a) with just one sign of
a. For certain values of a, however, F (q, a) can be related to the theta functions of
zero argument (that is, z = 0). Of particular interest here are the two relations

F (q, 0) =
1
2

(
ϑ3(0, q) + 1

)
,

(5)
F (q, 1/2) =

1
2
ϑ2(0, q).

By taking derivatives of equation (2) and comparing terms, it is readily worked
out that F (q, a) must satisfy the differential equation

∂2

∂a2F =

[
2 ln q + 4q(ln q)2 ∂

∂q

]
F. (6)

1 In this and all other formulas, the notation of Whittaker and Watson [10] is used for the theta functions.
Specifically,

ϑ4(z, q) =

∞∑
n=−∞

(−)nqn
2

e2niz.

With the wide variety of notations in use, it is important that this be understood to avoid confusion
with other work.
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This can be converted to the more familiar diffusion-type equation by first letting
q = e−1/4x and introducing the new function

G(x, a) =
1

2x1/2
F
(
e−1/4x, a

)
. (7)

Equation (6) now becomes

∂2G

∂a2 =
∂G

∂x
. (8)

This differential equation is to be solved over the domain of real, non-negative
values of x and a. At the boundaries, the function is found to have the required values

G(x, 0) =
1

4x1/2

(
ϑ3(0, e−1/4x) + 1

)
, (9)

G(0, a) = 0. (10)

As a→∞, we arrive at a third boundary condition,

lim
α→∞

G(x, a) = 0. (11)

It may be noted that the point, x = a = 0, is problematical, since the limits of the two
equations (9) and (10) do not agree with each other. This is handled by removing an
infinitesimal region about this point from the domain.

The differential equation (8) is most easily solved by performing a Laplace trans-
form in x. Denote the transformed coordinate by s and the transformed function by
Ĝ(s, a). Using the boundary condition at x = 0, equation (8) is transformed to

∂2Ĝ

∂a2 = sĜ. (12)

Using the boundary conditions in a, this equation is easily solved to give

Ĝ(s, a) = Ĝ(s, 0) e−
√
sa, (13)

where Ĝ(s, 0) refers to the Laplace transform of G(x, 0). The inverse Laplace transform
is worked out as a convolution

G(x, a) =

∫ x

0
G(x− t, 0)

a

2
√
πt3

e−a
2/4t dt. (14)

The corresponding expression for F (q, a) can be obtained with equation (7). For
subsequent analysis, it is convenient to modify this by letting q = e−α and transforming
the integration coordinate to v = a2(1/4t − α). This leads to

F (e−α, a) =
e−αa

2

2
√
π

{∫ ∞
0

e−v√
v
ϑ3
(
0, e−α(1+αa2/v)) dv +

√
π

}
. (15)
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Using this in equation (3) yields

S(α) =
1
2

eα/4ϑ2(0, e−α) +
αe−α

2
√
π

∫ ∞
0

e−ve−α
2/4v

v3/2
ϑ′3
(
0, e−α(1+α/4v)) dv, (16)

where ϑ′3(0, q) is the first derivative of ϑ3(0, q) with respect to q.
Some further progress is possible with the integral. Since it vanishes exponen-

tially for large α, it is reasonable to focus on the case where α is small. As α
decreases, the integrand becomes dominated by the theta function. For a given value
of v (assumed to be non-zero), the integrand behaves as

e−ve−α
2/4v

v3/2
ϑ′3
(
0, e−α(1+α/4v)) ∼

α→0
ϑ′3(0, e−α)

e−v

(v + α/4)3/2
. (17)

To extract the small α behavior, then, this term is subtracted and added to the integrand,
the added part being integrated in closed form. The result is

S(α) =
1
2

eα/4ϑ2(0, e−α) + 2

√
α

π
e−αϑ′3(0, e−α)

(
1− 1

2

√
πα eα/4erfc

(√
α/2

))
+ e−αR(α), (18)

where

R(α) =
α

2
√
π

∫ ∞
0

e−v
(

e−α
2/4v

v3/2
ϑ′3
(
0, e−α(1+α/4v))

− 1

(v + α/4)3/2
ϑ′3(0, e−α)

)
dv. (19)

3. Some properties of the functions

The derived expression for S(α) is given as a sum of three terms. The first two
are closed-form expressions of well-known functions and the final term contains a
remaining integral. Although it is not obvious, these three terms are easily evaluated
for all values of α. The behavior of these three terms will be analyzed in this section
and a general procedure for their evaluation outlined.

Consider just the first two terms of equation (18) for now. These closed-form
expressions contain elementary functions whose computation is a straightforward mat-
ter. The exponential function and even the complementary error function can be found
in many computers’ math libraries. The theta functions are not so common and are
worth a few comments here.

There are four different theta functions, only three of which are needed for an
evaluation of S(α). Further, although the theta functions are generally defined as
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having two arguments, only one is non-zero in the expressions derived here. Formulas
for the functions needed here are

ϑ2(0, q) = 2
∞∑
n=0

q(n+1/2)2
,

ϑ3(0, q) = 1 + 2
∞∑
n=1

qn
2
,

(20)

ϑ4(0, q) = 1 + 2
∞∑
n=1

(−)nqn
2
,

ϑ′3(0, q) = 2
∞∑
n=1

n2qn
2−1.

Whenever q < 0.05, all these sums achieve sixteen-digit accuracy within four terms.
For q > 0.05, the functions can be transformed, using what is known as Jacobi’s
imaginary transformation [10], to a form that converges just as rapidly. The formulas
of importance here are:

ϑ2(0, e−α) =

(
π

α

)1/2

ϑ4
(
0, e−π

2/α
)
,

(21)

ϑ′3(0, e−α) =
π1/2

e−αα5/2

{
α

2
ϑ3
(
0, e−π

2/α
)
− π2e−π

2/αϑ′3
(
0, e−π

2/α
)}
.

If e−α > 0.05, then e−π
2/α < 0.05, and the sums defining the functions on the

right-hand sides converge rapidly – within four terms for sixteen-digit accuracy. The
evaluation of the theta functions is therefore rapid regardless of the value of α.

Consider the first term of equation (18) more closely. For reference purposes,
denote it by

T1 =
1
2

eα/4ϑ2(0, e−α). (22)

This term is important mainly for large values of α. It can be obtained from a direct
analysis of the sum in equation (1). After breaking up the factor of (2J + 1) in the
summand and separating the expression into two sums, there results

S(α) = 2
∞∑
J=0

J e−αJ(J+1) + T1. (23)

The importance of T1 for large values of α is a consequence of the fact that the first
term of the sum in equation (1) (i.e., the J = 0 term) becomes the most important
in this regime. This first term is contained entirely in T1. For large values of α, T1

approaches unity. As α gets smaller, on the other hand, T1 grows as α−1/2. However,
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the function S(α) grows as α−1 for small α, so that the important contribution in this
regime is due to the remaining sum in equation (23).

The second term in equation (18) will be denoted by

T2 = 2

√
α

π
e−αϑ′3(0, e−α)

(
1− 1

2

√
πα eα/4erfc(

√
α/2)

)
. (24)

Clearly, it is an approximation to the remaining sum in equation (23). For large
values of α, T2 decays exponentially, while for small values of α, it grows as α−1.
This term describes the small α behavior of S(α) while T1 describes the large α
behavior.

We can view the sum of the two terms, T1 + T2, as a first approximation for the
function, S(α); denote it by S0(α). This approximation is found to be fairly good. In
fact, in the two limits α→ 0 and α→∞, it is readily shown that the correct limiting
values are obtained:

S0(α) ∼
α→0

1
α

, S0(α) ∼
α→∞

1. (25)

For intermediate values of α, the approximation deviates from the exact result, but the
deviation is relatively small. The approximate and exact functions are compared in
figure 1. From the fairly good agreement, it is clear that only a modest approximation
for R(α) should provide a very good approximation for S(α).

Now, consider the third term of equation (18),

T3 = e−αR(α), (26)

where R(α) is given by equation (19). Because R(α) is expressed as an integral, this
term is not as easily evaluated as the other two. However, it does have some desirable
properties that allow some accurate approximations.

The integrand used to define R(α) is given by

I(v) = e−v
(

e−α
2/4v

v3/2
ϑ′3
(
0, e−α(1+α/4v))− 1

(v + α/4)3/2
ϑ′3(0, e−α)

)
. (27)

It is the difference of two terms, the first term being encountered in the original
expression for S(α) (see equation (16)) and the second term being the small α limit
of the first. I(v) is negative for all values of v so that T3 is negative for all α. For a
given non-zero value of v, I(v) vanishes in the limit α→ 0.

To evaluate R(α) reliably, it is important to understand the v-dependence of the
integrand. The v-dependence changes with α, but overall, the integrand is localized
to the small v region. As v gets large, both terms in I(v) approach the same limit.
The difference therefore goes to zero faster than either term alone. The infinite-ranged
integral can then be replaced by a finite-ranged one to a good approximation. The
cut-off to use in generating the finite-ranged integral varies with α, so it is useful to
investigate this.
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Figure 1. Comparison of S0(α) (dashed line) and S(α) (solid line).

If α is large, the first term in the integrand becomes small for all values of v,
and at some point becomes negligible. For large enough α,

I(v) ∼
α→∞

−ϑ′3(0, e−α)
e−v

(v + α/4)3/2
. (28)

In this regime, the integrand decays exponentially with v and the integral can be
effectively cut off when the exponential function is small relative to unity.

For smaller values of α, the first term in equation (27) becomes more important
and begins to cancel the second before the exponential factor cuts off the integral. This
cancellation occurs at steadily smaller values of v as α is decreased. How this cut-off
varies with α can be deduced as follows. The small α behavior of the integrand is
determined by the Jacobi imaginary transformation (see equation (21)). When α is less
than some threshold, call it αm, the transformation formula can be well approximated
by

ϑ′3(0, e−α) ≈ π1/2

2 e−αα3/2
. (29)

In this regime, both terms in the integrand yield the same approximate value (differing
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only by exponentially small terms), so that the integral is effectively cut off when α(1+
α/4v) is smaller than the threshold value, αm. In terms of v, the integral is cut off when

v >
α2

4(αm − α)
. (30)

For small values of α, this cut-off decreases as α2. This does not mean that the integral
vanishes in the limit of small α. On the contrary, the integral approaches a non-zero
limit. For v = 0, the first term of the integrand vanishes while the second increases in
magnitude as α−3/2. Further, all of the derivatives of the first term are zero at v = 0,
meaning that this term stays close to zero for a range of small values of v. Although
the effective range of integration decreases with α, its evaluation remains important
to the limit of α→ 0.

The localized nature of the integrand suggests a simple numerical integration.
A 129-point Romberg integration [9] was used over a finite range in v. The upper
limit used for the integration was

vmax = 10

(
− 3

4
+
[
(3/4)2 + (α/2)2]1/2

)
. (31)

With this procedure, T3 was computed to within 0.0001 of the exact result for all
values of α. This does require the evaluation of the integrand over 129 points and
may be considered time consuming. However, it is not necessary to monitor the size
of the terms, nor to consider whether the range of α is appropriate.

Although numerical integration is accurate, an analytic evaluation or even approx-
imation for T3 would be desirable. Before concluding this section, then, some of the
analytic properties of R(α) will be discussed and an ad hoc approximation presented.

The integral can be evaluated by expanding the first theta function in equa-
tion (19), integrating term by term, and recombining at the end. The resulting expres-
sion is

R(α) = 2
∞∑
n=1

n e−α(n2+n−1) − 2

(
α

π

)1/2

ϑ′3(0, e−α)

×
(

1− 1
2

√
πα eα/4erfc(

√
α/2)

)
. (32)

Clearly, this expression is not of any use for computational work; one might as well
use the original definition of S(α). However, it does allow the determination of the
correct behavior of this function in the α→ 0 and α→∞ limits.

For large α, equation (32) yields

R(α) ∼
α→∞

−4

(
α

π

)1/2(
1− 1

2

√
πα eα/4erfc(

√
α/2)

)
+ (exponential terms)

(33)
∼

α→∞
− 8√

πα
+ O

(
α−3/2).
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Figure 2. R(α) as a function of α (solid line). Also shown are the large (dashed) and small (dash-dotted)
limiting forms of equations (33) and (34).

This behavior is due solely to the second term of the integrand; the first term is
exponentially small. For small α, the Euler–MacLaurin sum formula can be used to
rearrange the first term of equation (32) to give

R(α) ∼
α→0
−1

6
− 11

60
α− 241

2520
α2 − 7

240
α3 − 1277

332640
α4 − · · · . (34)

In this range, the second term of the integrand cancels out a major contribution from
the first. The sum in equation (34) comes entirely from the remaining part of the
first term. The small and large α limits are therefore due to the separate terms in
the integrand. The behavior in these limits is markedly different as can be seen in
figure 2 where R(α) is plotted along with the large and small α forms. Trying to find
an approximation that models both regions correctly is a numerical challenge.

There are many ways to model this function, some more empirical than others.
One approximation that is accurate to within 0.002 for all α is constructed as follows.
It is first noted that R(α) is multiplied by e−α, so that more emphasis will be given
to the small α behavior. When α is small, the integrand increases in magnitude near
v = 0 and becomes more localized in this region. For larger α, the integrand behaves
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as an exponential. A function that has these features is

Ia(v) = A e−av−bv
2
, (35)

where A, a and b are functions of α designed to give the desired behavior. Using this
integrand, the approximation

Ra(α) =
α

2
√
π

∫ ∞
0

Ia(v) dv (36)

is proposed. The parameter A is designed to get the magnitude correctly near v = 0,
a is expected to approach 1 as α increases, and b is expected to increase as α−4 as α
decreases. The v = 0 limit of the integrand and its first derivative can be worked out
in closed form, suggesting the values

A = − 8

α3/2
ϑ′3(0, e−α), a =

α+ 6
α

. (37)

The other parameter will be rewritten as b = β/α4, and β will be chosen to give the
correct small α limit for Ra(α).

The integral can be evaluated in closed form, leading to β = 36π and

Ra(α) = −α
3/2ϑ′3(0, e−α)

3
√
π

eα
2(α+6)2/144πerfc

(
α(α + 6)

12
√
π

)
. (38)

This approximation yields the correct α→ 0 and α→∞ limits. However, it does not
model the function well inbetween. To improve the approximation, it is multiplied by
a function of the form

P (α) = 1 +

∑3
j=1 cjα

j

1 + γα3 . (39)

The coefficients cj are chosen to get the first few terms of the small α expansion (34)
correctly. The denominator is introduced to damp out the function as α gets larger
and γ is chosen empirically to get the best agreement inbetween. Direct calculation
leads to

c1 =
1

10
+

1
π

, c2 = − 11
420

+
1

60π
+

1
π2 ,

(40)
c3 =− 13

840
− 33

280π
+

1
10π2 +

1
π3 .

By trying several values of γ, optimum agreement with the exact result was obtained
with a value of γ = 0.12. Comparison of e−αRa(α)P (α) with T3 showed a maximum
deviation of 0.002.
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4. Derivatives of S(α)

Because S(α) is expressed in terms of analytic functions, its derivatives are
readily evaluated from equation (18). Explicit formulas for the first two derivatives
will be given here. Higher derivatives are obtained in the same way.

Consider each term separately. The first term and its first two derivatives are
given by

T1 =
1
2

eα/4ϑ2(0, e−α),

T ′1 =
1
4
T1 −

1
2

e−3α/4ϑ′2(0, e−α), (41)

T ′′1 =
1

16
T1 +

1
4

e−3α/4ϑ′2(0, e−α) +
1
2

e−7α/4ϑ′′2(0, e−α),

where the primes on the theta functions denote differentiation with respect to q while
those on T1 denote differentiation with respect to α. For reference purposes,

ϑ′2(0, q) = 2
∞∑
n=0

(n+ 1/2)2qn
2+n−3/4,

(42)

ϑ′′2 (0, q) = 2
∞∑
n=0

(n+ 1/2)2(n2 + n− 3/4)qn
2+n−7/4.

As with the other theta functions, Jacobi’s imaginary transformation can be applied to
these functions to ensure rapid convergence for all values of q.

For the second term,

T2 = 2

√
α

π
e−αϑ′3(0, e−α)

(
1− 1

2

√
πα eα/4erfc(

√
α/2)

)
,

T ′2 = 2

√
α

π
e−α
{
ϑ′3(0, e−α)

[
2− 3α

4α
+

3α− 4
8α

√
πα eα/4erfc(

√
α/2)

]
− e−αϑ′′3(0, e−α)

[
1− 1

2

√
πα eα/4erfc(

√
α/2)

]}
,

(43)

T ′′2 = 2

√
α

π
e−α
{
ϑ′3(0, e−α)

[
9α2 − 10α− 4

16α2 +
24− 9α

32α

√
πα eα/4erfc(

√
α/2)

]
+ e−αϑ′′3(0, e−α)

[
5α − 2

2α
+

4− 5α
4α

√
πα eα/4erfc(

√
α/2)

]
+ e−2αϑ′′′3 (0, e−α)

[
1− 1

2

√
πα eα/4erfc(

√
α/2)

]}
.
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The theta function derivatives are

ϑ′′3(0, q) = 2
∞∑
n=1

n2(n2 − 1)qn
2−2,

(44)

ϑ′′′3 (0, q) = 2
∞∑
n=1

n2(n2 − 1)(n2 − 2)qn
2−3.

The derivatives of the third term are best evaluated over several levels. Thus,

T3 = e−αR(α),

T ′3 = e−α{−R(α) +R′(α)}, (45)

T ′′3 = e−α{R(α)− 2R′(α) +R′′},

where

R(α) =
α

2
√
π

∫ ∞
0

H(α, v) dv,

R′(α) =
1
α
R(α) +

α

2
√
π

∫ ∞
0

H ′(α, v) dv, (46)

R′′(α) =
1√
π

∫ ∞
0

H ′(α, v) dv +
α

2
√
π

∫ ∞
0

H ′′(α, v) dv.

The integrands are given by

H(α, v) = e−v
{

e−α
2/4v

v3/2
ϑ′3
(
0, e−α(1+α/4v))− 1

(v + α/4)3/2
ϑ′3(0, e−α)

}
,

H ′(α, v) = e−v
{
− αe−α

2/4v

2v5/2
ϑ′3
(
0, e−α(1+α/4v))

− 2v + α

2v5/2
e−αe−α

2/2vϑ′′3
(
0, e−α(1+α/4v))

+
3

8(v + α/4)5/2
ϑ′3(0, e−α) +

e−α

(v + α/4)3/2
ϑ′′3(0, e−α)

}
,

H ′′(α, v) = e−v
{
α2 − 2v

4v7/2
e−α

2/4vϑ′3
(
0, e−α(1+α/4v)) (47)

+
4v2 − 2v + 8vα + 3α2

4v7/2
e−αe−α

2/2vϑ′′3
(
0, e−α(1+α/4v))

+
(2v + α)2

4v7/2
e−2αe−3α2/4vϑ′′′3

(
0, e−α(1+α/4v))

− 15
64(v + α/4)7/2

ϑ′3(0, e−α)− 3 + 4v + α

4(v + α/4)5/2
e−αϑ′′3(0, e−α)

− e−2α

(v + α/4)3/2
ϑ′′′3 (0, e−α)

}
.
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Clearly, these expressions become increasingly unwieldy. Nevertheless, they are
exact and readily evaluated on a computer. Further, the integrals involved in the
derivatives of T3 contain integrands that are localized and can be accurately evaluated
numerically.

5. Conclusions

The infinite sum of equation (1) has been evaluated in closed form as a sum of
three terms. The significance of this result can be seen on two levels. The most obvious
is on a formal level. In the first place, Statistical Mechanics textbooks commonly state
that the sum cannot be evaluated (three examples are [1,2,6]). The expression derived
here contradicts this statement. Second, functional analysis of S(α) is more easily
achieved with the closed-form expression than it is with the infinite sum. Finally, the
derivatives of S(α) are more easily evaluated with the functional expression and their
properties more easily analyzed than with the infinite sum.

The more practical significance of this result is that there is a single expres-
sion for the rotational partition function that is accurate and equally convenient at all
temperatures. Direct summation is also accurate at all temperatures, but it becomes
increasingly awkward at higher temperatures due to the slower convergence. Several
asymptotic expansions have been derived that are more efficient for higher tempera-
tures, but they are inaccurate at lower temperatures. Use of McDowell’s expression [7],
for example, becomes inaccurate for HCl below 10 K, while it becomes inaccurate for
H2 below 60 K. The expression derived here is accurate at all temperatures and is as
easily evaluated at high as at low temperatures.

Derivatives of S(α) are also of interest, and the expression derived here has
certain advantages over both the infinite sum and the asymptotic expansions. Term by
term differentiation of the infinite sum can be performed and numerically evaluated,
but the slow convergence at higher temperatures is worse for these expressions than
for the original sum. On the other hand, differentiation of the asymptotic expansion is
not necessarily reliable.2 Exact expressions for the derivatives can be evaluated from
the expression derived here and evaluated accordingly. They are accurate and easily
evaluated at all temperatures.

The weakest part of the expression is the function R(α), expressed here as an
integral. A simple approximation is to ignore this term, leading to what has been
referred to as S0(α). This seems to work fairly well but comparisons of the rotational
partition functions with the exact results for several molecules show noticeable dif-
ferences; in particular, there is an inherent error of 1/6 for higher temperatures. The
approximation suggested in equations (38) and (39) requires about 10 percent more
computational effort than ignoring the function and is quite accurate. For higher accu-
racy, the integral can be evaluated numerically; 129-point Romberg integration ensures

2 According to Whittaker and Watson [10, p. 153], “it is not in general permissible to differentiate an
asymptotic expansion.”
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evaluation to within 0.0001. Even so, an analytic evaluation of this remaining term
would be desirable. It is still possible that a solution could be found.
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